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Abstract. To determine the similarity of labeled graphs, the graph edit
distance (GED) is widely used due to its metric properties on the graph
space and its interpretability. It is defined as the minimal cost of a se-
quence of edit operations transforming one graph into another one, with
the cost of each edit operation being a parameter of the distance. Al-
though calculating GED is NP-hard, various heuristics exist which, in
practice, typically yield tight upper or lower bounds. Since determining
appropriate edit operation costs for a given dataset or application can be
challenging, it is attractive to learn these costs from the data, e. g., using
metric learning architectures. However, for this approach to be feasible,
a differentiable algorithm to approximate the GED is required. In this
work, we present such an algorithm and show via an empirical evaluation
on three datasets that the obtained distances closely match the distances
computed by a state-of-the-art combinatorial GED heuristic.

Keywords: Graph Edit Distance · Sinkhorn Algorithm · Differentiable
Solver.

1 Introduction

The graph edit distance (GED) [10] is a classical approach to quantify the dis-
similarity of two labeled graphs G and H. It involves transforming a graph G
into a graph isomorphic to H through a sequence of six elementary edit oper-
ations (node or edge insertion, deletion, or substitution), which all come with
associated edit costs. A sequence of edit operations transforming G into H is
called edit path, and its cost is defined as the sum of the individual operation
costs. The GED from G to H is defined as the minimal cost of an edit path from
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G to H. Computing GED is NP-hard [19], but various well-performing heuristics
exist which provide upper or lower bounds [2].

In most GED heuristics, the edit operation costs are treated as parameters to
be provided by the user. Since defining sensible costs for a given dataset can be
challenging, is has been suggested to learn the edit costs from the data [11,14].
However, in existing approaches, a ground-truth mapping from the nodes of G
to the nodes of H is required which is often not available. Moreover, even if such
a mapping exists, it may not be unique, and a priori fixing one mapping may
induce a bias in the learning process. In view of recent advances in the field of
metric learning [18], it is hence attractive to learn the edit costs in an end-to-end
fashion. For this, however, a differentiable operator to (approximately) compute
GED is required which currently does not exist. Here, we close this gap.

Our differentiable GED operator relies on two building blocks. The first one
is the widely used GED heuristic BRANCH [15], which computes both upper
and lower bounds for GED [3]. BRANCH transforms the problem of computing
GED to a linear sum assignment problem with error-correction (LSAPE), which
is then solved using variants of the Hungarian algorithm [8,7]. The other building
block is a recent work [9] which shows that the (differentiable) Sinkhorn algo-
rithm [16] can be adapted such that it yields a differentiable approximation of
LSAPE. We combine these building blocks into a differentiable operator to com-
pute GED by replacing the Hungarian algorithm in BRANCH with the adapted
Sinkhorn algorithm. Tests on three datasets show that our differentiable GED
approximator achieves equally good results as BRANCH. Our results hence pave
the way for incorporating GED into differentiable metric learning frameworks,
thereby facilitating future advances in end-to-end learning of the edit costs.

2 Preliminaries

Basic Notations. We consider undirected, possibly labeled graphs G = (V G, EG)
and H = (V H , EH), set n := |V G| and m := |V H |, and use the notations
[n] := {1, . . . , n} and [m] := {1, . . . ,m} to denote the index sets for the nodes
of G and H, respectively. In addition, for any matrix X of size n×m, xi,j with
i ∈ [n] and j ∈ [m] will always denote the entries of the matrix.

Graph Edit Distance and Node Maps. While GED is classically defined in terms
of edit paths as explained above, most algorithmic approaches rely on an alter-
native definition in terms of node maps. A node map π ⊆ (V G∪{ϵ})×(V H∪{ϵ})
specifies for all nodes and, derived from this, for all edges if they are substituted,
inserted, or deleted. Applying π’s induced edit operations yields an induced edit
path Pπ, with c(π) denoting the sum of the costs of all its edit operations. Under
reasonable constraints that hold in almost all applications, minimizing c(π) over
all node maps π from G to H yields the GED between these graphs [6,4].

The Linear Sum Assignment Problem with Error Correction. LSAPE is an ex-
tension of the well-known bipartite matching a. k. a. linear sum assignment prob-
lem (LSAP), where two additional dummy nodes n+1 and m+1 are inserted to
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model insertions and deletions. Given a cost matrix C of size (n+ 1)× (m+ 1)
with cn+1,m+1 = 0, LSAPE asks to solve the discrete minimization problem

min
X

n+1∑
i=1

m+1∑
j=1

ci,jxi,j =: C(X), (1)

where X ∈ {0, 1}(n+1)×(m+1) is an error-correcting permutation matrix (a. k. a.
ϵ-permutation matrix), i. e., a binary matrix with

∑n+1
i=1 xi,j = 1 for all j ∈ [m],

and
∑m+1

j=1 xi,j = 1 for all i ∈ [n] [7] (note that there are no constraints on
i = n + 1 and j = m + 1). Each ϵ-permutation matrix X induces an error-
correcting matching (also called ϵ-matching)

πX := {(i, j) ∈ [n+ 1]× [m+ 1] | xi,j = 1}, (2)

and we use the notation C(πX) := C(X) to denote the matching cost of πX . The
Hungarian algorithm [12] is a widely used method for optimally solving LSAP
and can also be extended to optimally solve LSAPE [8,7].

The Sinkhorn Algorithm. The Sinkhorn-Knopp theorem states that, for each
positive matrix S of size n × n, there are positive diagonal matrices D1 and
D2 such that X := D1SD2 ∈ Rn×n is bistochastic (i. e., all rows and columns
of X sum up to 1). The Sinkhorn algorithm produces a series of matrices that
converge to X via alternate scaling of S’s rows and columns to unit sum. If
applied on an exponentiated cost matrix

S := exp(−ε−1C), (3)

the Sinkhorn algorithm converges to the optimal solution of the optimal transport
problem with entropic regularization (ε > 0 is the regularization constant) [13].
This problem, in turn, can be seen as a continuous relaxation of LSAP.

While the classical Sinkhorn algorithm is applicable only to matrices S of
size n×n, it has recently been shown that that it can be generalized to positive
rectangular matrices of size (n+1)×(m+1) [9] and then yields an ϵ-bistochastic
matrix X ∈ Rn+1×m+1, where the firsts n row sums, the first m column sums,
and the entry xn+1,m+1 equals 1. Since ϵ-bistochastic matrices are continuous
relaxations of ϵ-matchings, running the adapted Sinkhorn algorithm on an ex-
ponentiated cost matrix yields a differentiable approximation of LSAPE [9].

Heuristics for Graph Edit Distance Computation Based on the Linear Sum As-
signment with Error Correction. Various GED heuristics exist that are based on
LSAPE [2]. These algorithms decompose the input graphs G and H into local
structures rooted at their nodes and then construct an instance C of LSAPE,
where the last row Cn+1,• and the last column C•,m+1 contain, respectively, local
structure insertion and deletion costs and the remaining cells Ci,j contain local
structure substitution costs. C is then solved optimally, e. g., with a variant of
the Hungarian algorithm, which yields an ϵ-matching πX ⊆ [n+ 1]× [m+ 1].
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Since π can be interpreted as a node map from V G to V H , its induced
edit cost c(πX) is an upper bound for GED. Moreover, for some LSAPE-based
GED heuristics, the matching cost C(πX) is a lower bound for GED. One such
approach is the widely used algorithm BRANCH [15]. In this algorithm, the
local structures are defined as branches (i. e., root nodes together with their
adjacent edges) and the LSAPE instance C is defined in terms of the elementary
node and edge edit costs required to transform a branch rooted at node u ∈ V G

into a branch rooted at node v ∈ V H (see [15,3,2] for details). For this article,
we tested our differentiable GED approximator with the LSAPE instance C as
constructed by BRANCH but the underlying approach is compatible with any
LSAPE-based GED heuristic. Moreover, for our algorithm to be differentiable,
we assume that C is provided as input. This assumption can be lifted by using
the Sinkhorn algorithm not only as an approximate solver for C but also for the
approximate computation of the branch edit costs during the construction of C.

3 A Differentiable Graph Edit Distance Approximator

graphs G and H
with corresponding
LSAPE instance C
as constructed by

BRANCH

similarity
matrix S

ϵ-bistochastic
matrix XS

ϵ-permutation
matrix X̂S

ϵ-permutation
matrix XH

upper
bound
c(πX̂S )

approxi-
mation
C(X̂S)

approxi-
mation
C(XS)

upper
bound
c(πXH )

lower
bound
C(XH)

eqs. (4) to (7) extended
Sinkhorn algorithm

Hungarian
algorithm

Hungarian algorithm

Fig. 1. Overview of our differentiable GED approximator (blue) with discrete post-
processing (violet) in comparison to BRANCH (turquoise).

Figure 1 provides an overview of our continuous GED approximator. Given
two graphs G and H and a corresponding LSAPE instance C as constructed by
BRANCH, we start by transforming C into a similarity matrix S as follows: We
first compute a transformed cost matrix C ′ by setting

c′i,j :=

{
ci,j −min{ci,j′ | j′ ∈ [m+ 1]} i ∈ [n]

ci,j i = n+ 1
(4)
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for all (i, j) ∈ [n+ 1]× [m+ 1], and further transform C ′ into C ′′ by defining

c′′i,j :=

{
c′i,j −min{c′i′,j | i′ ∈ [n+ 1]} j ∈ [m]

c′i,j j = m+ 1
(5)

for all (i, j) ∈ [n+1]× [m+1]. Let us note that eqs. (4) and (5) correspond to the
initialization steps of the LSAPE algorithm [8,7]. The matrices C ′′ and C corre-
spond to equivalent LSAPE problems. Within our context, these simplifications
of the cost matrix ensure that the minimum of each row and each column is set
to 0. Using the construction scheme described below (eq. (7)), the corresponding
similarity values is set to 1 independently of the entropic regularization.

Next, we compute a scaling factor

T := min
{
α, β · log(α) ·max(C ′′)−1

}
, (6)

where α, β > 0 are scaling hyper-parameters. Constant T can be interpreted as
the inverse of the regularization constant ε in eq. (3). Equipped with C ′′ and T ,
we then compute a similarity matrix as follows:

S := exp(−T · C ′′) (7)
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Fig. 2. Shape of the cost-to-similarity transformation function for different values of
the parameters α and β. (A, B) Shape for varying α and fixed values of β. (C, D)
Shape for varying β and fixed values of α.

Let us note that the division by max(C ′′) allows to normalize all cost values
between 0 and 1. The resulting cost-to-similarity function in dependence on β
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and α is visualized in Figure 2: For small values of α and β, the function has a
near-linear behaviour. For larger β and α, it assumes the shape of a step function.

Once S has been constructed, we feed it into the extended Sinkhorn algorithm
proposed in [9]. This yields an ϵ-bistochastic matrix XS , whose matching cost
C(XS) (see eq. (1)) constitutes our differentiably computable approximation of
the GED from G to H. C(XS) is the analogue to the matching cost C(XH) of
the ϵ-permutation matrix XH computed by BRANCH, but— unlike C(XH)— is
not guaranteed to constitute a lower bound for GED.

To enable comparison also w. r. t. BRANCH’s upper bound c(πXH ), we fur-
ther project XS to an ϵ-permutation matrix X̂S , using the Hungarian algorithm
(violet boxes and arrows in Figure 1). The node map πX̂S induced by X̂S then
yields an upper bound c(πX̂S ) for GED, and the matching cost C(X̂S) gives
us another approximation for GED. Note that since the computation of X̂S re-
lies on the non-differentiable Hungarian algorithm, neither c(πX̂S ) nor C(X̂S)
should be viewed as direct output of our differentiable GED approximator.

4 Empirical Evaluation

Datasets and Edit Costs. We used the datasets Acyclic and MAO from GR-
EYC’s Chemistry Dataset (https://brunl01.users.greyc.fr/CHEMISTRY/). The
graphs contained in these datasets represent molecular compounds. The Acyclic
dataset contains 183 acyclic graphs, while the MAO dataset contains 68 graphs
including cycles. Both datasets contain node labels, and edge labels assumed
to be uniform. To also consider variability in edge labels, we used a dataset
presented in [17], containing 72 graphs with non-uniform node and edge la-
bels, representing pseudoknotted RNA secondary structures. We used a pre-
processed version of the data provided by the authors of [5] (https://github.com/
bionetslab/edge-preservation-similarity/). As elementary edit costs, we choose
(csV , c

d
V , c

i
V , c

s
E , c

d
E , c

i
E) = (2, 4, 4, 1, 1, 1), as proposed in [1].

Evaluation Metrics. As evaluation metrics, we calculated the relative diversions
of the matching costs C(XS) and C(X̂S) w. r. t. the matching cost (lower bound
for GED) C(XH) of the ϵ-permutation matrix computed by BRANCH:

div(XS) :=
C(XS)− C(XH)

C(XH) + 1
div(X̂S) :=

C(X̂S)− C(XH)

C(XH) + 1
(8)

Since neither C(XS) nor C(X̂S) are provable lower or upper bounds for GED,
it is unclear whether higher or lower values C(XS) and C(X̂S) are closer to
GED. This is why we use the term “diversion” in the context of comparison of
the matching costs. If div(XS) and div(X̂S) are close to 0, C(XS) and C(X̂S)
constitute approximations of GED which are close-to-equivalent to the lower
bound C(XH) computed by BRANCH. To quantify the quality of the upper
bound c(πX̂S ), we computed the relative error:

error(X̂S) :=
c(πX̂S )− c(πXH )

c(πXH ) + 1
(9)

https://brunl01.users.greyc.fr/CHEMISTRY/
https://github.com/bionetslab/edge-preservation-similarity/
https://github.com/bionetslab/edge-preservation-similarity/
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Fig. 3. Relative diversions of the matching costs of the ϵ-bistochastic matrices XS

from the matching costs of the ϵ-permutation matrices XH computed by BRANCH.
A: Violin plots showing distributions of relative diversions div(XS) split by datasets.
B: Relative diversions div(XS) in dependence of α and β.

Here, we use the term “error” because c(πX̂S ) is an upper bound for GED and
so a lower value is always preferable. If error(X̂S) is negative, the upper bound
c(πX̂S ) is tighter than the upper bound provided by BRANCH.

Implementation, Availability, and Hardware Specification. We implemented our
algorithm in Python and relied on PyTorch to implement the adapted Sinkhorn
algorithm suggested in [9]. The source code is available on GitHub (https://
github.com/juliawal/continuous_ged_approximation). Tests were run on a Mac-
Book with an Apple M1 processor and 8GB of RAM.

Quality of the Differentiable Approximation. Figure 3 shows the diversions of
the matching costs of the ϵ-bistochastic matrices XS , split across datasets (Fig-
ure 3A) and for varying hyper-parameters α and β (Figure 3B). For all three
datasets, the median is around zero, with individual outliers that are largest for
the RNA dataset and smallest for Acyclic. Larger values of α and β result in a
smaller diversions. Overall, this means that our differentiable GED approxima-
tion is close to the lower bound for GED computed by BRANCH.

Quality of the Projection. Figure 4 shows the diversions of the matching costs
of the projections X̂S , split across datasets (Figure 4A) and for varying hyper-
parameters α and β (Figure 4B). While we observe a minor increase in diversion
for increasing α and β, diversions are overall tiny and even smaller than for the
ϵ-bistochastic matrices.

The quality of the projections’ induced edit costs c(πX̂S ) (upper bound for
GED) is visualized in Figure 5. For all three datasets, the median relative error
is around 0 (Figure 5A). While there are individual outliers for the RNA dataset,
for larger values of α and β, the upper bound c(πX̂S ) is actually tighter than
the upper bound computed by BRANCH for around 70 to 75% of all instances
(Figure 5B). Errors decrease with increasing values of α and β (Figure 5C).

https://github.com/juliawal/continuous_ged_approximation
https://github.com/juliawal/continuous_ged_approximation
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Fig. 4. Relative diversions of the matching costs of the projections X̂S of the ϵ-
bistochastic matrices XS from the matching costs of the ϵ-permutation matrices XH

computed by BRANCH. A: Violin plots showing distributions of relative diversions
div(X̂S) split by datasets. B: Relative diversions div(X̂S) in dependence of α and β.
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XH computed by BRANCH. A: Violin plots showing distributions of relative errors
split by datasets. B: Fractions of instances with negative or zero relative errors. C:
Relative errors in dependence of α and β.
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Runtime. Figure 6 shows the runtime of the Sinkhorn algorithm when fed with
similarity matrices constructed according to eq. (7) in dependence of α and β.
Larger values of α and β lead to longer runtimes, independently of the dataset.
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Fig. 6. Runtime of the Sinkhorn algorithm step within our continuous GED approxi-
mator for varying hyper-parameters α (A) and β (B).

5 Summary and Outloook

In this article, we presented a differentiable approximator for GED based on a
reduction to LSAPE and an extended version of the Sinkhorn algorithm. Having
access to such an approximator is desirable because it allows to incorporate
the approximation of GED into deep metric learning frameworks, which may
pave the way for a data-driven inference of elementary edit costs. Tests on three
datasets showed that our approach performs similar to the widely used GED
heuristic BRANCH. Our work opens up various avenues for future work: For
instance, it would be interesting to assess the effect of replacing the Hungarian
algorithm by the Sinkhorn algorithm also in the construction of the LSAPE
instance C, which we here treated as part of the input. It may also be possible
to formulate an error-correcting version of the optimal transport problem with
entropic regularization, which may provide a strong theoretical justification for
using the Sinkhorn algorithm as an approximate solver for LSAPE.
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